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ABSTRACT: Quantum machine learning algorithms, the extensions of
machine learning to quantum regimes, are believed to be more powerful as
they leverage the power of quantum properties. Quantum machine learning
methods have been employed to solve quantum many-body systems and have
demonstrated accurate electronic structure calculations of lattice models,
molecular systems, and recently periodic systems. A hybrid approach using
restricted Boltzmann machines and a quantum algorithm to obtain the
probability distribution that can be optimized classically is a promising method
due to its efficiency and ease of implementation. Here, we implement the
benchmark test of the hybrid quantum machine learning on the IBM-Q
quantum computer to calculate the electronic structure of typical two-
dimensional crystal structures: hexagonal-boron nitride and graphene. The
band structures of these systems calculated using the hybrid quantum machine
learning approach are in good agreement with those obtained by the conventional electronic structure calculations. This benchmark
result implies that the hybrid quantum machine learning method, empowered by quantum computers, could provide a new way of
calculating the electronic structures of quantum many-body systems.

1. INTRODUCTION

Machine learning (ML) driven by big data and computing
power has made a profound impact on various fields, including
science and engineering.1 Remarkably successful applications
of machine learning range from image and speech
recognition2,3 to autonomous driving.4 The recent success of
machine learning is mainly due to the rapid increase in classical
computing power. This impact of ML has made it a useful tool
to solve various problems in physical sciences.5 Quantum
computing is a new way of computation by harnessing the
quantum properties such as the superposition and entangle-
ment of quantum states. Some quantum algorithms run on
quantum computers could solve the problems which are
intractable by classical computers.6 Recent progress in the
development of Noisy Intermediate-Scale Quantum (NISQ)
devices7 makes it possible to run and test multiple quantum
algorithms for various practical applications.
Quantum machine learning,8 the interplay of classical

machine learning techniques with quantum computation,
provides new algorithms that may offer tantalizing prospects
to improve machine learning. At the same time, these
techniques aid in solving the quantum many-body prob-
lems.9−14 Using neural networks with a supervised learning
scheme, Xu et al.15 have shown that measurement outcomes
can be mapped to the quantum states for full quantum state
tomography. Cong et al.16 have developed a quantum machine

learning model motivated by convolutional neural networks,
which makes use of N(log( )) variational parameters for input
sizes of N qubits that allows for efficient training and
implementation on near term quantum devices.
It is important to solve many-body problems accurately for

the advancement of material science and chemistry, as various
material properties and chemical reactions are related to
quantum many-body effects. Carleo and Troyer17 introduced a
novel idea of representing the many-body wave function in
terms of artificial neural networks, specifically restricted
Boltzmann machines (RBMs), to find the ground state of
quantum many-body systems and to describe the time
evolution of the quantum Ising and Heisenberg models. This
representation was modified by Torlai et al.18 for their purpose
of quantum state tomography in order to account for the wave
function’s phase.
Quantum chemistry and electronic structure calculations

using quantum computing are considered one of the first real
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applications of quantum computers.19−23 Xia and Kais24

proposed a quantum machine learning method based on
RBM to obtain the electronic structure of molecules. The
traditional RBM was extended to three layers to take into
account the signs of the coefficients for the basis functions of
the wave function. This method was applied to molecular and
spin−lattice systems. Recently, Kanno et al.25 have extended
the method proposed by Xia and Kais by providing an
additional unit to the third layer of an RBM in order to
represent complex values of the wave functions of periodic
systems.
Since the discovery of graphene, it has sparked a huge

interest due to its remarkable properties. Recently, there has
been a great deal of interest in studying graphene for quantum
computing applications.26,27 Hexagonal boron nitride (h-BN)
gained attention when it was shown that graphene electronics
is improved when h-BN is used as a substrate for graphene.28

Of late, the interest to study h-BN for quantum information
has grown since it was discovered that the negatively charged
boron vacancy spin defects in h-BN display spin-dependent
photon emission at room temperature.29−31 Hence, in addition
to studying graphene, it is important to study h-BN as it is a
potential candidate for creating spin qubits that can be
optically initialized and read out.
In this paper, we implement the quantum machine learning

method with a three-layered RBM along with a quantum
circuit to sample the Gibbs distribution24,25 to calculate the
electronic structure of periodic systems. Specifically, the
implementation on NISQ devices is shown by modifying this
quantum machine learning algorithm to run on an actual
quantum computer. As the benchmark test, we demonstrate
the performance of this algorithm first through the simulation
of tight-binding and Hubbard Hamiltonians of monolayer
hexagonal boron nitride and monolayer-graphene, respectively,
on the IBM quantum computing processors, which is done
using the IBM quantum experience. The valence band of the 2-
D honeycomb lattices is calculated using quantum machine
learning methods on IBM-Q and the qasm simulator. As we
shall see, such valence band calculations on IBM-Q after
employing a warm start and measurement error mitigation are
shown to be in good agreement with the exact calculations.
This paper is organized as follows. In section 2, the quantum

machine learning method based on RBM is introduced, and
implementation details are discussed. Section 3 presents the
results of electronic structure calculations using quantum
machine learning on the qasm simulator and IBM-Q quantum
computers. Finally, the summary and discussion will be given
in section 4.

2. METHODOLOGY

In this section, we review the basic outline of the machine
learning algorithm used and also discuss the implementation
details.
Quantum Machine Learning Algorithm. A quantum

many-body state |Ψ⟩ can be expanded in terms of the basis | ⟩x ,
|Ψ⟩ = ∑ Ψ | ⟩x x( ) where Ψ(x) is the wave function. Carleo and
Troyer’s17 method involved representing the trial wave
function Ψ(x; θ) in terms of a neural network with parameters
θ and to obtain the ground state by minimizing the expectation
value of the Hamiltonian of a quantum many-body system,

θ θ θ= ⟨Ψ | |Ψ ⟩E H( ) ( ) ( ) . This was shown to use lesser number
of parameters compared to tensor networks, indicating the

efficiency of using such a representation. More specifically, the
ansatz of a trial wave function is given by the marginal
probability P(x; θ) of a visible layer of the RBM,

θ θΨ = Px x( ; ) ( ; ) . While the learning of conventional
RBMs is done by maximizing the likelihood function with
respect to training data sets, the ground state of a neural
network RBM state is obtained by minimizing the energy E(θ)
using the stochastic optimization algorithm.
Xia and Kais24 introduced the third layer with a single unit

to take into account the signs of the wave function and apply
the quantum restricted Boltzmann machine on actual quantum
computers rather than the Monte Carlo method on classical
digital computers. This quantum machine learning algorithm
was further extended to take into account the complex value of
the wave function.25 However, implementation on an actual
quantum computing processor was not shown, which would
require multiple ancillary qubits as shown in this work.
The RBM we consider here consists of three layers: a visible

layer, a hidden layer, and a sign layer, as shown in Figure 1. In

contrast with the conventional RBMs with visible and hidden
layers, the sign layer is added to take into account the real and
imaginary values of the wave function of a quantum state.
The wave function of a periodic system can be expressed as

∑|Ψ⟩ = | ⟩P sx x x( ) ( )
x (1)

where
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∑
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Here σi
z is the z-component of the Pauli operators at i,

σ σ σ σ| ⟩ = | ⟩x ...z z z
n
z

1 2 3 is the basis vector, and the values that σi
z

and hj take are {+1, −1}. ai, bj, c, and e denote the trainable bias
parameters of the visible units, the hidden units, the unit
representing the real part of the sign layer, and the unit

Figure 1. Restricted Boltzmann machine used to calculate the
electronic structure of periodic materials. Here, the sign layer consists
of two units, one to account for the real part and the other for the
imaginary part of the wave function.
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representing the imaginary part of the sign layer, respectively.
wij, di, and f i denote the trainable weights corresponding to the
connections between σi

z and hj, σi
z and the unit representing

the real part of the sign layer, and σi
z and the unit representing

the imaginary part of the sign layer, respectively. All the
parameters are randomly initialized, and the values of these
random numbers range from −0.02 to 0.02.
In order to obtain the probability distribution, the quantum

circuit (shown in Figure 2) is employed. The quantum circuit
consists of a single qubit rotation (Ry) and a controlled−
controlled rotation operation (C − C − Ry). The angle by
which the Ry operation rotates is determined by the visible and
hidden bias parameters ai and bj. The angle by which the C −
C − Ry operation rotates is determined by the weights
connecting the visible and hidden layers, wij. For each
combination of visible and hidden units, y = {σz, h}, in order
to increase the probability of successful sampling, the
distribution Q(y) is sampled rather than P(y).24 The two
distribution functions P(y) and Q(y) are given by

=
∑ ′ ′

σ σ

σ σ

∑ +∑ +∑
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Here, k is taken as ∑
| |( )max , 1ij
w

2
ij .24 This is done in order to

make the lower bound of the probability of successful sampling
a constant. If k is taken to be 1, then the number of
measurements required to get successful sampling becomes
exponential. (See the Supporting Information.)
The target qubits for the controlled−controlled rotations are

the ancilla qubits. Once all the rotations are completed, the
ancilla qubits are measured. If the ancilla qubits are in | ⟩1 , then
the sampling is deemed successful. Then, the qubits
corresponding to the visible and hidden units are measured
to obtain the distribution Q(y). Once the distribution Q(y) is
obtained, the probabilities are calculated to the power of k and

then normalized to get P(y). With P(y) computed through our
QML algorithm and s(y) computed classically, the wave
function ψ| ⟩ is computed, and through this the energy E(θ) is
obtained. This value of E(θ) is optimized through gradient
descent until the eigenvalue of the Hamiltonian is obtained.
For this algorithm, the number of qubits required scales as

O(nm), and the complexity of the gates turns out to be O(nm)
for one sampling,24 where n is the number of visible units and
m is the number of hidden units.

Implementation Methods. The developed quantum
machine learning algorithm for calculating the band structures
of monolayer h-BN and monolayer-graphene is executed using
the following tools:

(i) We start with the implementation of the algorithm
classically. Classical simulation is performed to ensure
the algorithm performs accurately. Here, classical
simulation implies that the gates were simulated on a
classical computer.

(ii) Having ensured that the algorithm works when
implemented classically, we move on to implementing
it using Qiskit. Qiskit stands for IBM’s Quantum
Information Software Kit (Qiskit) and is designed to
mimic calculations performed on a real noisy-inter-
mediate scale quantum computing device using a
classical computer. Specifically, we implemented the
algorithm on the qasm back-end, which is a high-
performance quantum circuit simulator amenable to
treat the errors (noise) associated with the implementa-
tion of the quantum circuit with appropriate custom-
izable noise models. Essentially, the qasm simulator is
designed to replicate an actual noisy quantum device.
Even if a custom noise is not chosen, the qasm simulator
can be made to mimic a particular IBM-Q backend, in
which case, the simulator automatically assumes a noise
consistent with the hardware of the real device. The C −
C − Ry gate can be implemented by using Qiskit’s
multicontrolled y-rotation (mcry) operation, by specify-
ing the control, target, and ancillary qubits. The circuit is
executed multiple times on the simulator, each time
culminating in the chosen set of measurements. The

Figure 2. a) Quantum circuit to sample Gibbs distribution. This circuit consists of 2 visible units, 2 hidden units, and 4 ancilla qubits. Ry represents
the single qubit rotation, C − C − Ry represents the controlled−controlled rotation, with visible and hidden units being the control qubits and
ancilla qubit being the target qubit. After measurement, if the ancilla qubits are in | ⟩1111 , only then do the qubits corresponding to the visible and
hidden units give the distribution P(x). b) Decomposition of the C − C − Ry gate for | ⟩11 . Here U = V2, and this leads to choosing V = Ry(θ/2). c)
C − C − Ry conditioned by | ⟩00 , | ⟩01 , | ⟩10 , and | ⟩11 can be achieved by implementing the circuit in this form.
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return values are the probabilities for observing the
system in measurement basis states with statistical errors
due to finite sampling.

(iii) We conclude our discussion by implementing and
demonstrating the validity of our results using two
actual IBM-Q quantum computers available. Qiskit’s
results in (i) are compared with those obtained from
these real quantum devices.

In the following section, we display the simulation results.
The terms “RBM Value” and “Exact Value” stand for the values
of valence band energies obtained from our RBM-based
approach and from exact diagonalization of the Hamiltonian,
respectively.
Initializing the parameters of the RBM randomly can lead to

the energies corresponding to certain k points being stuck at
local minima. To enhance the generalizing capability of a
machine learning model, transfer learning technique can be
used. Recently, it has also been extended to the realm of
quantum computing.32 However, in our case, in order to
improve the convergence, a method of warm starting is
sufficient, wherein the parameters of a previously converged
point are used to initialize the parameters of the current point
of calculation. Noting that the band structure exists in a 4D
space corresponding to energy as a function of kx, ky, and kz, in
this case too, if the optimization is performed such that the
energy is minimized for every (kx, ky, kz) point, then the
parameters of such a point in 4D space can be considered to
improve the convergence of the other points.
When implementing the algorithm on NISQ devices, we

have to account for the noise that interferes with the accuracy
of the results. In this work, we try to mitigate the errors that
occur during measurement using measurement error mitigation.
The counts corresponding to each state will not be definite

as a result of noise. There will be a finite number of counts
corresponding to the other basis states even when the
measurement outcome is supposed to result in one. So, the
counts for each state can be written as a column vector, and a
matrix, called the calibration matrix, can be defined
corresponding to the concatenation of all column vectors
describing the counts for all the basis states. The least-squares

method can now be used to get the error mitigated
probabilities for each of the states by using the calibration
matrix, the ideal state vector, and the noisy result that was
obtained. An example of the probability distribution Q(y)
obtained with and without measurement error mitigation is
shown in Figure 3.

3. RESULTS AND DISCUSSION

As a benchmark test of our quantum machine learning
algorithm on existing IBM quantum computers, we calculate
the electronic structures of two well-studied two-dimensional
periodic systems with hexagonal lattices namely boron-nitride
and graphene. In this section, we discuss the results for each of
the two systems.

Band Structure of Monolayer h-BN. Hexagonal boron
nitride (h-BN) has a unit cell containing one B atom and
another N atom. For h-BN, the levels involving the other
valence orbitals, the 2s, 2px, and 2py, are either quite far above
or far below the Fermi level. The conduction and valence
bands, which are around the Fermi level, are formed from the
2pz orbital, and hence, a tight-binding Hamiltonian using the
frontier 2pz orbital and with third-nearest neighbor interaction
on each of the two atoms of the unit cell is employed to obtain
the electronic structure. Such a treatment affords the requisite
dimensionality reduction as the number of qubits available on
the IBM quantum computers is limited. Considering spin-
degeneracy, the tight-binding Hamiltonian of the h-BN is thus
given by a 4 × 4 Hermitian matrix (see the Supporting
Information). The number of visible units needed for the
simulation is 2, and the number of hidden units is taken to be
equal to the number of visible units. For quantum
optimization, 2 qubits are used to represent the visible
nodes, and 2 qubits are used to represent the hidden nodes.
In addition, 4 ancillary qubits are required (see Figure 2). In
total, the number of qubits required is equal to 8. The
sampling of Gibbs distribution is performed by applying the
following sequences of quantum gates: 4 single-qubit rotation
gates (Ry), 16 controlled−controlled rotation gates (C − C −
Ry), and 24 bit-flip (X) gates, as illustrated in Figure 2.

Figure 3. Probabilities of states with ancilla qubits being in | ⟩1111 for both the cases with and without measurement error mitigation for the first
iteration.
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For h-BN band structure calculations, we start with the
results from RBM by implementing the gate-set (see Figure 2)
classically and then on the Qiskit’s quantum simulator, called
the qasm back-end. Figure 4(a) shows the band structure of h-
BN as a function of wave-vector amplitude sampled from the
first Brillouin zone. We overlay the valence band energies
obtained from our RBM network on a classical computer with
the exact diagonalization of the 4 × 4 tight-binding
Hamiltonian (black curve). The two results are in excellent
agreement. It must be noted that without a warm start results
may show deviations from the exact value at certain k-points,
as the optimization protocol may get locally trapped. However,
the use of the warm starting technique eliminates such
convergence issues. Figure 4(b) shows the band structure
calculation of h-BN wherein for the RBM, the quantum gates

are implemented on the Qiskit’s qasm back-end. For the sake
of our simulations, no noise model was considered, and the
results obtained are just with statistical errors. Even in this
case, if a warm start is provided, the quantum machine learning
algorithm on the Qiskit’s qasm simulator renders the exact
valence band. In Figure 4(c), we show the implementation
results for the valence band calculations using RBM wherein
the gate-set is implemented on real IBM quantum devices,
namely the ibmq_toronto and ibmq_sydney, both of which are
27 qubit devices. We see the results are in excellent agreement
with the exact diagonalization when a warm start is provided
along with measurement error mitigation.

Band Structure of Monolayer Graphene. Much like h-
BN, monolayer graphene also consists of two atoms in its unit
cells. However, unlike the previous case, both atomic centers

Figure 4. Band structure of h-BN calculated using (a) classical simulation with a warm start (red). The solid black curves show the valence and
conduction bands from exact diagonalization. (b) The qasm back-end simulation with the aid of a warm start (red). (c) The implementation of the
RBM sampling circuit on ibmq_toronto (green) and ibmq_sydney (red).

Figure 5. Band structure of the graphene for U = 0 eV calculated using (a) classical simulation with a warm start (red). The solid black curves show
the valence and conduction bands from exact diagonalization, (b) the qasm back-end simulation with the aid of a warm start (red). (c)
Implementation on actual IBM quantum computing devices. (d) Same as in (a) with Hubbard on-site interaction U = 9.3 eV. The four bands
correspond to the two nondegenerate spin states for each of the valences and conduction bands in plot (a). (e) Same as in (b) with Hubbard on-
site interaction U = 9.3 eV. (f) Same as in (c) with Hubbard on-site interaction U = 9.3 eV.
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are made up of carbon. Also, similar to h-BN, in the case of
graphene, the levels involving the other valence orbitals, the 2s,
2px, and 2py, are either quite far above or far below the Fermi
level. The orbital responsible for electrical conduction is just
the 2pz orbital, and hence, a tight-binding Hamiltonian for the
valence and conduction band with third-nearest neighbor
interaction is constructed by taking into account the frontier
2pz orbital on each of the carbons. The resultant matrix as
before is a 4 × 4 matrix including spin-degeneracy (see the
Supporting Information). We introduce electron-electron
interaction in graphene using the Fermi-Hubbard model with
an onsite repulsion parameter U between opposite spins. In
order to simulate graphene, the number of visible units and the
number of hidden units is equal to 2. Therefore, 2 qubits to
represent the visible nodes, 2 qubits to represent the hidden
nodes, and in addition to that, 4 ancilla qubits are required. In
total, the number of qubits required is equal to 8. The number
of quantum gates required to sample Gibbs distribution is 4
single qubit rotation gates (Ry), 16 controlled−controlled
rotation gates (C − C − Ry), and 24 bit-flip (X) gates.
The band structure of monolayer graphene is calculated

using the IBM Qiskit’s qasm simulator and by running the
QML algorithm on the IBM-Q quantum computers. Figure
5(a) shows the results for the band structure of graphene at
zero U using the classical simulation. As before, the results are
overlaid on top of the eigenvalues obtained from exact
diagonalization of the 4 × 4 Hamiltonian. In Figure 5(b), we
show the band structure of the graphene for U = 0 calculated
using the Qiskit’s qasm simulator. Finally, in Figure 5(c), we
show the results of the quantum machine learning algorithm
for calculation of the band structure of graphene on IBM-Q
quantum computers, ibmq_toronto, and ibmq_sydney. Even for
the case of graphene, the results are in good agreement with
the exact diagonalization when a warm start is provided along
with measurement error mitigation.
To show the band splitting for a nonzero on-site repulsion

U, the Fermi level is shifted by a chemical potential μ = 15 eV,
which controls the filling of electrons. Figure 5(d,e) plots the
band structures of graphene for U = 9.3 eV obtained using the
classical simulation, Qiskit’s qasm back end, and the actual
implementation on an IBM quantum computer. The RBM
results are again in good agreement with that from exact
diagonalization in all of the cases.
Fidelity. To verify if the eigenstates provided by the QML

algorithm match those obtained from exact diagonalization, the
fidelity for each k point is calculated. It can be seen from
Figure 6 that the error (1-Fidelity) is very small for classical
simulation and simulation on the qasm back-end for both
materials. The fidelity is calculated as follows

= |⟨Ψ|Φ⟩|Fidelity 2

where |Ψ⟩ is the eigenvector obtained from QML, and |Φ⟩ is
the eigenvector obtained from exact diagonalization.

4. CONCLUSION
The primary goal of this study was to examine the performance
of an RBM on a NISQ device in order to calculate the
electronic structure of materials. In this work, the materials
that were taken under consideration were monolayer
hexagonal boron nitride (h-BN) and monolayer graphene,
both of which are two-dimensional solids. A tight-binding and
a Hubbard Hamiltonian were constructed for h-BN and
graphene, respectively. By using an RBM and a quantum
circuit to sample Gibbs distribution, the valence band energies
for each of the two materials were obtained. In the case of
graphene, the simulations were performed first for the case
when the Hubbard U is equal to 0 and then for the case of
nonzero U. The band splitting for the case of nonzero U was
also shown. The simulations for both graphene and h-BN were
done using IBM’s Qiskit framework as well as on real IBM
quantum computing platforms.
Implementing RBM classically can either use Maximum-

likelihood based gradient descent (which has a time complexity
that is exponential in the size of the smallest layer)33 or
Contrastive Divergence using Gibbs sampling, a Markov Chain
Monte Carlo (MCMC) method (which is a more efficient
approach) to estimate the gradients.34 The time complexity for
training an RBM in the classical case scales as O(N), where N
is the size of the training data, while the implementation of
RBM on a quantum computer has been shown to have
quadratic speed-ups.35 Also, computing the ground state of a
given Hamiltonian using exact diagonalization has a complexity
of the order of q3, where q is the dimension of the column

space of a given matrix.36 However, setting =
| |( )k max 1,
w

2
ij

provides a constant lower bound in the probability of
successful sampling, and thus the complexity for one iteration
scales as O(mnN), where N is the number of successful
samplings required to get the distribution P(x).
The current quantum machine learning method could

calculate only on the ground state energy of the periodic
systems, i.e., the valence band, an extension needed to treat
systems with multiple valence bands37 or to procure higher
order energy bands. This can be done by sampling the
orthogonal subspace of the previously computed valence
band.38 Also, to calculate the transition matrix elements, the
valence and conduction Bloch wavevectors should be obtained.
The expectation value of an operator with respect to the

Figure 6. Error in fidelity (1 − F) is plotted as a function of the reciprocal lattice vector (k) for classical simulation and qasm back-end simulation.
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ground state may be calculated using the Hellmann−Feynman
method.39 Here, the effect of noise on quantum machine
learning is not fully explored, while the Qiskit’s qasm simulator
and IBM-Q noisy quantum computers show the effect of noise
on quantum optimization. With the field of quantum
computing developing rapidly, the curiosity of combining
machine learning and quantum computing has led to very
interesting research. With the development of quantum
computers and their capability to scale very fast, quantum
machine learning can prove to be useful in not only electronic
structure methods but also as a significant tool in developing
new materials and understanding complex phenomena.
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